Dual Universal Switched-Capacitor Filters

General Description

The MAX7490/MAX7491 consist of two identical lowpower, low-voltage, wide dynamic range, Rail-to-Rail ${ }^{\circledR}$, 2nd-order switched-capacitor building blocks. Each of the two filter sections, together with two to four external resistors, can generate all standard 2nd-order functions: bandpass, lowpass, highpass, and notch (band reject). Three of these functions are simultaneously available. Fourth-order filters can be obtained by cascading the two 2nd-order filter sections. Similarly, higher order filters can easily be created by cascading multiple MAX7490/MAX7491s.

Two clocking options are available: self-clocking (through the use of an external capacitor) or external clocking for tighter cutoff frequency control. The clock-to-center frequency ratio is 100:1. Sampling is done at twice the clock frequency, further separating the cutoff frequency and Nyquist frequency.
The MAX7490/MAX7491 have an internal rail splitter that establishes a precise common voltage needed for single-supply operation. The MAX7490 operates from a single +5 V supply and the MAX7491 operates from a single +3 V supply. Both devices feature a low-power shutdown mode and come in a 16-pin QSOP package.

Applications
Tunable Active Filters
Multipole Filters
ADC Anti-Aliasing
Post-DAC Filtering
Adaptive Filtering
Phase-Locked Loops (PLLs)
Set-Top Boxes

Typical Application Circuit appears at end of data sheet.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- Dual 2nd-Order Filter in a 16-Pin QSOP Package
- High Accuracy

Q Accuracy: $\pm 0.2 \%$
Clock-to-Center Frequency Error: $\pm 0.2 \%$

- Rail-to-Rail Input and Output Operation
- Single-Supply Operation: +5V (MAX7490) or +3V (MAX7491)
- Internal or External Clock
- Highpass, Lowpass, Bandpass, and Notch Filters
- Clock-to-Center Frequency Ratio of 100:1
- Internal Sampling-to-Center Frequency Ratio of 200:1
- Center Frequency up to 40kHz
- Easily Cascaded for Multipole Filters
- Low-Power Shutdown: <1 $\mu \mathrm{A}$ Supply Current

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	SUPPLY VOLTAGE $(+V)$
MAX7490CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	5
MAX7490EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	5
MAX7491CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 QSOP	3
MAX7491EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	3

Pin Configuration

Dual Universal Switched-Capacitor Filters

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range	
MAX749_CEE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX749 EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Die Temperature .. $150^{\circ} \mathrm{C}$	
Storage Temperature................................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX7490

$\left(V_{D D}=E X T C L K=+5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=625 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}, 10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to $\mathrm{V}_{\mathrm{DD}} / 2$ at $\mathrm{LP}_{\sim}, B P_{,}$, and $\mathrm{N} / \mathrm{HP}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, 0.1 \mu \mathrm{~F}$ from COM to GND, 50% duty-cycle clock input, $\mathrm{COM}=\mathrm{V}_{\mathrm{DD}} / 2$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FILTER						
Center Frequency Range	fo	Mode 1		$\begin{gathered} 0.001 \text { to } \\ 40 \end{gathered}$		kHz
Clock-to-Center Frequency Accuracy	fclk/fo	Mode 1, R1 $=\mathrm{R} 3=50 \mathrm{k} \Omega, \mathrm{R} 2=10 \mathrm{k} \Omega$, $Q=5$, deviation from 100:1		± 0.2	± 0.7	\%
Q Accuracy		Mode 1, R1 $=\mathrm{R} 3=50 \mathrm{k} \Omega$, R2 $=10 \mathrm{k} \Omega, \mathrm{Q}=5$		± 0.2	± 2	\%
fo Temperature Coefficient				± 1		ppm $/{ }^{\circ} \mathrm{C}$
Q Temperature Coefficient				± 5		ppm $/{ }^{\circ} \mathrm{C}$
DC Lowpass Gain Accuracy		Mode 1, R1 = R2 = 10k		± 0.1	± 0.5	\%
DC Offset Voltage (Figure 8)	VOS1	DC offset of input inverter		± 3	± 12.5	mV
	Vos2	DC offset of 1st integrator		± 4	± 15	
	Vos3	DC offset of 2nd integrator		± 4	± 30	
Crosstalk (Note 2)		$\mathrm{fin}=10 \mathrm{kHz}$		-60		dB
COM Voltage Range	VCOM	Input: COM externally driven	$\begin{gathered} \mathrm{V}_{\mathrm{DD} / 2} \\ -0.5 \end{gathered}$	VDD/2	$\begin{aligned} & V_{D D / 2} \\ & +0.5 \end{aligned}$	V
		Output: COM internally driven	$\begin{gathered} V_{D D / 2} \\ -0.2 \end{gathered}$	VDD/2	$\begin{aligned} & V_{D D / 2} \\ & +0.2 \end{aligned}$	
Input Resistance at COM	RCom		140	250	325	$\mathrm{k} \Omega$
Clock Feedthrough		Up to 5th harmonic of f CLK		200		$\mu \mathrm{V}_{\text {RMS }}$
Noise (Note 3)		Mode 1, R1 = R2 = R3 $=10 \mathrm{k} \Omega$, LP output, Q = 1		60		$\mu \mathrm{V}_{\text {RMS }}$
Output Voltage Swing			0.2		VDD - 0.2	V
Input Leakage Current at COM		$\overline{\mathrm{SHDN}}=\mathrm{GND}, \mathrm{V}_{\text {COM }}=0$ to $\mathrm{V}_{\text {DD }}$		± 0.1	± 10	$\mu \mathrm{A}$
CLOCK						
Maximum Clock Frequency	fCLK			4		MHz
Internal Oscillator Frequency (Note 4)	fosc	EXTCLK = GND, COSC $=1000 \mathrm{pF}$	95	135	175	kHz
		EXTCLK $=$ GND, Cosc $=100 \mathrm{pF}$		1.35		MHz
Clock Input High			VDD - 0.5			V

Dual Universal Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7490 (continued)

$\left(V_{D D}=E X T C L K=+5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=625 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}, 10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to $\mathrm{V}_{\mathrm{DD}} / 2$ at $\mathrm{LP}, \mathrm{BP}_{\text {, }}$, and $\mathrm{N} _/ \mathrm{HP}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, 0.1 \mu \mathrm{~F}$ from COM to GND, 50% duty-cycle clock input, $C O M=V_{D D} / 2$. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Clock Input Low					0.5	V
Clock Duty Cycle				50 ± 5		\%
SHDN AND EXTCLK						
Input High	V_{IH}		VDD - 0.5			V
Input Low	$\mathrm{V}_{\text {IL }}$				0.5	V
Input Leakage Current		$\mathrm{V}_{\text {INPUT }}=0$ to $\mathrm{V}_{\text {DD }}$		± 0.4	± 10	$\mu \mathrm{A}$
POWER REQUIREMENTS						
Supply Voltage	VDD		4.5		5.5	V
Power-Supply Current	IDD	No external load, mode 1, R1 $=R 3=50 \mathrm{k} \Omega$, $R 2=10 \mathrm{k} \Omega, \mathrm{Q}=5$		3.5	4.0	mA
Shutdown Current	ISHDN	$\overline{\text { SHDN }}=$ GND			1	$\mu \mathrm{A}$
INTERNAL OP AMPS CHARACTERISTICS						
Output Short-Circuit Current				± 18		mA
DC Open-Loop Gain		$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$		130		dB
Gain Bandwidth Product	GBW	$\mathrm{RL} \geq 10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$		7		MHz
Slew Rate	SR	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$		6.4		V/us

Dual Universal Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7491

$\left(V_{D D}=E X T C L K=+3 V, f_{C L K}=625 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}, 10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to $\mathrm{V}_{\mathrm{DD}} / 2$ at LP, BP, and $\mathrm{N} / \mathrm{HP}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, 0.1 \mu \mathrm{~F}$ from COM to GND, 50% duty-cycle clock input, $\mathrm{COM}=\mathrm{V}_{\mathrm{DD}} / 2$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FILTER						
Center Frequency Range	fo	Mode 1		$\begin{gathered} 0.001 \text { to } \\ 40 \end{gathered}$		kHz
Clock-to-Center Frequency Accuracy	fclk/fo	Mode 1, R1 $=\mathrm{R} 3=50 \mathrm{k} \Omega, \mathrm{R} 2=10 \mathrm{k} \Omega$, $Q=5$, deviation from 100:1		± 0.2	± 0.7	\%
Q Accuracy		Mode 1, R1 $=\mathrm{R} 3=50 \mathrm{k} \Omega, \mathrm{R} 2=10 \mathrm{k} \Omega$, $Q=5$		± 0.2	± 2	\%
fo Temperature Coefficient				± 1		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Q Temperature Coefficient				± 5		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DC Lowpass Gain Accuracy		Mode 1, R1 = R2 = 10k Ω		± 0.1	± 0.5	\%
DC Offset Voltage (Figure 8)	VOS1	DC offset of input inverter		± 3	± 12.5	mV
	Vos2	DC offset of 1st integrator		± 4	± 15	
	Vos3	DC offset of 2nd integrator		± 4	± 25	
Crosstalk (Note 2)		$\mathrm{fin}=10 \mathrm{kHz}$		-60		dB
COM Voltage Range	Vcom	Input: COM externally driven	$\begin{gathered} \mathrm{V}_{\mathrm{DD} / 2} \\ -0.1 \end{gathered}$	VDD/2	$\begin{aligned} & V_{D D / 2} \\ & +0.1 \end{aligned}$	V
		Output: COM internally driven	$\begin{gathered} V_{D D / 2} \\ -0.1 \end{gathered}$	VDD/2	$\begin{gathered} V_{D D / 2} \\ +0.1 \end{gathered}$	
Input Resistance at COM	Rcom		60	80	120	$\mathrm{k} \Omega$
Clock Feedthrough		Up to 5th harmonic of fCLK		200		$\mu \mathrm{V}$ RMS
Noise (Note 3)		Mode 1, R1 $=R 2=R 3=10 k \Omega$, LP output, $\mathrm{Q}=1$		60		$\mu \mathrm{V}_{\mathrm{RMS}}$
Output Voltage Swing			0.2		VDD -0.2	V
Input Leakage Current at COM		$\overline{\mathrm{SHDN}}=\mathrm{GND}, \mathrm{V}_{\mathrm{COM}}=0$ to VDD		± 0.1	± 10	$\mu \mathrm{A}$
CLOCK						
Maximum Clock Frequency	fCLK			4		MHz
Internal Oscillator Frequency (Note 4)	fosc	EXTCLK $=$ GND, Cosc $=1000 \mathrm{pF}$	95	135	175	kHz
		EXTCLK $=$ GND, Cosc $=100 \mathrm{pF}$		1.35		MHz
Clock Input High			VDD - 0.5			V
Clock Input Low					0.5	V
Clock Duty Cycle				50 ± 5		\%
SHDN AND EXTCLK						
Input High	V_{IH}		VDD - 0.5			V
Input Low	$\mathrm{V}_{\text {IL }}$				0.5	V
Input Leakage Current		$\mathrm{V}_{\text {INPUT }}=0$ to $\mathrm{V}_{\text {DD }}$		± 0.4	± 10	$\mu \mathrm{A}$

Dual Universal Switched-Capacitor Filters

ELECTRICAL CHARACTERISTICS—MAX7491 (continued)

$\left(V_{D D}=E X T C L K=+3 V, f_{C L K}=625 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}, 10 \mathrm{k} \Omega \| 50 \mathrm{pF}$ load to $\mathrm{V}_{\mathrm{DD}} / 2$ at $\mathrm{LP}, \mathrm{BP}_{-}$, and $\mathrm{N} / \mathrm{HP}, \overline{\mathrm{SHDN}}=\mathrm{V}_{\mathrm{DD}}, 0.1 \mu \mathrm{~F}$ from COM to GND, 50% duty-cycle clock input, $\mathrm{COM}=\mathrm{V}_{\mathrm{DD}} / 2$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER REQUIREMENTS						
Supply Voltage	$V_{\text {DD }}$		2.7		3.6	V
Power-Supply Current	IDD	No load, mode 1, R1 = R3 $=50 \mathrm{k} \Omega$, $\mathrm{R} 2=10 \mathrm{k} \Omega, \mathrm{Q}=5$		3.5	4.0	mA
Shutdown Current	ISHDN	$\overline{\text { SHDN }}=$ GND			1	$\mu \mathrm{A}$
INTERNAL OP AMPS CHARACTERISTICS						
Output Short-Circuit Current				± 11		mA
DC Open-Loop Gain		$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$		130		dB
Gain Bandwidth Product	GBW	$\mathrm{RL}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$		7		MHz
Slew Rate	SR	$\mathrm{RL}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$		6		V/us

Note 1: Resistive loading of the N_/HP, LP, BP_ outputs includes the resistors used for the filter implementation.
Note 2: Crosstalk between internal filter sections is measured by applying a $1 \mathrm{~V}_{\mathrm{RMS}} 10 \mathrm{kHz}$ signal to one bandpass filter section input and grounding the input of the other bandpass filter section. The crosstalk is the ratio between the output of the grounded filter section and the $1 V_{\text {RMS }}$ input signal of the other section.
Note 3: Bandwidth of noise measurement is 80 kHz .
Note 4: fosc $(\mathrm{kHz})=135 \times 10^{3} / \operatorname{Cosc}($ Cosc in pF)

Typical Operating Characteristics
$\left(V_{D D}=+5 V\right.$ for MAX7490, $V_{D D}=+3 V$ for MAX7491, $\mathrm{fCLK}=625 \mathrm{kHz}, \overline{S H D N}=E X T C L K=V_{D D}, C O M=V_{D D} / 2, M o d e 1, R 3=R 1=50 k \Omega$, $R 2=10 \mathrm{k} \Omega, Q=5, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual Universal Switched-Capacitor Filters

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 \mathrm{~V}\right.$ for $M A X 7490, V_{D D}=+3 V$ for $M A X 7491, f C L K=625 \mathrm{kHz}, \overline{S H D N}=E X T C L K=V_{D D}, C O M=V_{D D} / 2, M o d e 1, R 3=R 1=50 \mathrm{k} \Omega$, $R 2=10 \mathrm{k} \Omega, \mathrm{Q}=5, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

SUPPLY CURRENT vs. SUPPLY VOLTAGE

NaSEvs. Q

QDEVIATION vs. faK

SUPPLY CURRENT vs. TEMPERATURE

MAX7491
THD + NOSE vs. FREQUENCY

Dual Universal Switched-Capacitor Filters

Typical Operating Characteristics (continued)
$\left(V_{D D}=+5 V\right.$ for $M A X 7490, V_{D D}=+3 V$ for MAX7491, fCLK $=625 k H z, \overline{S H D N}=E X T C L K=V_{D D}, C O M=V_{D D} / 2, M o d e 1, R 3=R 1=50 k \Omega$, $R 2=10 \mathrm{k} \Omega, \mathrm{Q}=5, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Dual Universal Switched-Capacitor Filters

PIN	NAME		FUNCTION
	FILTER A	FILTER B	
LP_	1	16	2nd-Order Lowpass Filter Output
BP $_{-}$	2	15	2nd-Order Bandpass Filter Output
N_HP $_{-}$	3	14	2nd-Order Notch/Highpass Filter Output
INV_	4	13	Inverting Input of Filter Summing Op Amp

Detailed Description

The MAX7490/MAX7491 are universal switched-capacitor filters designed with a fixed internal fCLK/fo ratio of 100:1. Operating modes use external resistors connected in different arrangements to realize different filter functions (highpass, lowpass, bandpass, notch) in all of the classical filter topologies (Butterworth, Bessel, elliptic, Chebyshev). Figure 1 shows a block diagram.

Clock Signal

External Clock The MAX7490/MAX7491 switched-capacitor filters are designed for use with external clocks that have a 50% $\pm 5 \%$ duty cycle. When using an external clock, drive the EXTCLK pin high or connect to $V_{D D}$. Drive CLK with CMOS logic levels (GND and $V_{D D}$). Varying the rate of
the external clock adjusts the center frequency of the filter:

$$
\mathrm{fo}=\mathrm{fcLK} / 100
$$

Internal Clock
When using the internal oscillator, drive the EXTCLK pin low or connect to GND and connect a capacitor (COSC) between CLK and GND. The value of the capacitor (Cosc) determines the oscillator frequency as follows:

$$
\text { fosc }(k H z)=135 \times 10^{3} / \operatorname{Cosc}(p F)
$$

Since Cosc is in the low picofarads, minimize the stray capacitance at CLK so that it does not affect the internal oscillator frequency. Varying the frequency of the internal oscillator adjusts the filter's center frequency by a 100:1 clock-to-center frequency ratio. For example, an internal oscillator frequency of 135 kHz produces a nominal center frequency of 1.35 kHz .

Dual Universal Switched-Capacitor Filters

Figure 1. Block Diagram

2nd-Order Filter Stage

 The MAX7490/MAX7491 are dual biquad filters. The biquad topology allows the use of standard filter tables and equations to implement simultaneous lowpass, bandpass, and notch or highpass filters. Topologies such as Butterworth, Chebyshev, Bessel, elliptic, as well as custom algorithms are possible.
Internal Common Voltage

The COM pin sets the common-mode input voltage and is internally biased to $\mathrm{V}_{\mathrm{DD}} / 2$ with a resistor-divider. The resistors used are typically $250 \mathrm{k} \Omega$ for the MAX7490, and typically $80 \mathrm{k} \Omega$ for the MAX7491. The commonmode voltage is easily overdriven by an external voltage supply if desired. The COM pin should be bypassed to the analog ground with at least a $0.1 \mu \mathrm{~F}$ capacitor.

Inverting Inputs

 Locate resistors that are connected to INV_ as close as possible to INV_to reduce stray capacitance and noise pickup. INV_ are inverting inputs to continuous-time op amps, and behave like a virtual ground. There is no sampling energy present on these inputs.Outputs
Each switched-capacitor section, together with two to four external resistors, can generate all standard 2ndorder functions: bandpass, lowpass, highpass, and notch (band-reject) functions. Three of these functions are simultaneously available. The maximum signal swing is limited by the power-supply voltages used. The amplifiers' outputs in the MAX7490/MAX7491 are
able to swing to within approximately 0.2 V of either supply.
Driving coaxial cable, large capacitive loads, or total resistive loads less than $10 \mathrm{k} \Omega$ will degrade the total harmonic distortion (THD) performance. Note that the effective resistive load at the output must include both the feedback resistors and any external load resistors.

Low-Power Shutdown Mode

 The MAX7490/MAX7491 have a shutdown mode that is activated by driving SHDN low. In shutdown mode, the filter supply current reduces to $<1 \mu \mathrm{~A}$ (max), and the filter outputs become high impedance. The COM input also becomes high impedance during shutdown. For normal operation, drive SHDN high or connect to VDD.
Applications Information

Designing with the MAX7490/MAX7491 begins by selecting the mode that best fits the desired circuit requirements. Table 1 lists the available modes and their relative advantages and disadvantages. Table 2 lists the different nomenclature used in the explanations that follow.

Mode 1
Figure 2 shows the MAX7490/MAX7491s' configuration of Mode 1. This mode provides 2 nd-order notch, lowpass, and bandpass filter functions. The gain at all three outputs is inversely proportional to the value of R1. The center frequency, fo, is fixed at fcLK/100. HighQ bandpass filters can be built without exceeding the bandpass amplifier's output swing (i.e., HOBP does not

Dual Universal Switched-Capacitor Filters

Table 1. Filter Operating Modes

| MODE | LP | HP | BP | N | LP-N * | HP-N* | COMMENTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | (

* $L P-N=$ lowpass notch, HP-N = highpass notch. Both require an external op amp. See Definition of Terms (Table 2).

Table 2. Definition of Terms

TERM	DEFINITION
fCLK	The clock frequency applied to the switched-capacitor filter.
fo	The center frequency of the 2nd-order complex pole pair, fo, is determined by measuring the peak response frequency at the bandpass output.
$\mathrm{f}_{\mathrm{NOTCH}}$	The frequency of minimum amplitude response at the notch output.
Q	Quality factor, or Q, is the ratio of $f 0$ to the -3 dB bandwidth of the 2 nd-order bandpass filter. Q also determines the amount of amplitude peaking at the lowpass and highpass outputs, but is not measured at these outputs.
Hobp	The gain in V/V of the bandpass output at $f=f 0$.
Holp	The gain in V/V of the lowpass output at $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$.
НоНР	The gain in V/V of the highpass output at $\mathrm{f} \rightarrow \mathrm{f}$ CLK/2.
HoN1	The notch output gain as $\mathrm{f} \rightarrow \mathrm{OHz}$.
HON2	The notch output gain at $\mathrm{f}=\mathrm{fCLK} / 2$.
LP-N	A notch output with HON1 > HON2.
HP-N	A notch output with HON1 < HON2.

Dual Universal Switched-Capacitor Filters

Figure 2. Mode 1, 2nd-Order Filter Providing Notch, Bandpass, and Lowpass Outputs
have to track Q). The notch and bandpass center frequencies are identical. The notch output gain is the same above and below the notch center frequency. Mode 1 can also be used to make high-order Butterworth lowpass filters, low Q notches, and multiple-order bandpass filters obtained by cascading identical switched-capacitor sections.

Mode 1 Design Equations

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{O}}=\frac{\mathrm{f} \mathrm{CLK}}{100} \\
& \mathrm{f}_{\text {notch }}=\mathrm{f}_{\mathrm{O}} \\
& \mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \\
& \mathrm{H}_{\mathrm{OLP}}=\frac{-\mathrm{R} 2}{\mathrm{R} 1} \\
& \mathrm{H}_{\mathrm{OBP}}=\frac{-\mathrm{R} 3}{\mathrm{R} 1}
\end{aligned}
$$

$\mathrm{H}_{\mathrm{ON1}}($ as $\mathrm{f} \rightarrow 0 \mathrm{~Hz})=\frac{-\mathrm{R} 2}{\mathrm{R} 1}$
$H_{\text {ON2 }}\left(\right.$ at $\left.f=f_{C L K} / 2\right)=\frac{-R 2}{R 1}$
Mode 1B
Figure 3 shows the configuration of Mode 1B. R5 and R6 are added to lower the feedback voltage from the lowpass output to the summing input. This allows the clock-to-center frequency to be adjusted beyond the nominal value. This mode essentially has the same functions and speed as Mode 1 while providing a highQ with fCLK/fo ratios greater than the nominal value.

Figure 3. Mode 1B, 2nd-Order Filter Providing Notch, Bandpass, and Lowpass Outputs

Mode 1B Design Equations

$$
\begin{aligned}
& f_{0}=\frac{f_{C L K}}{100} \sqrt{\frac{R 6}{R 6+R 5}} \\
& f_{n}=f_{\mathrm{O}} \\
& Q=\frac{R 3}{R 2} \sqrt{\frac{R 6}{R 6+R 5}} \\
& H_{O L P}=\frac{-R 2}{R 1} \frac{R 6+R 5}{R 6} \\
& H_{\text {OBP }}=\frac{-R 3}{R 1} \\
& H_{\text {ON1 }}(\text { as } f \rightarrow 0 H z)=\frac{-R 2}{R 1} \\
& H_{\text {ON2 }}\left(\text { at } f=f_{C L K} / 2\right)=\frac{-R 2}{R 1}
\end{aligned}
$$

Mode 2
Figure 4 shows the configuration of Mode 2. Mode 2 is a combination of Mode 1 and Mode 3. In this mode, fCLK/fo is always less than the part's nominal ratio. However, it provides less sensitivity to resistor tolerances than does Mode 3. It has a highpass notch output where the notch frequency depends solely on the clock frequency.

Dual Universal Switched-Capacitor Filters

Mode 2 Design Equations

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{O}}=\frac{\mathrm{f} \mathrm{CLK}}{100} \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \\
& \mathrm{f}_{\mathrm{n}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \\
& \mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \\
& \mathrm{H}_{\mathrm{OLP}}=\frac{-\mathrm{R} 2}{\mathrm{R} 1}\left(\frac{\mathrm{R} 4}{\mathrm{R} 4+\mathrm{R} 2}\right) \\
& \mathrm{H}_{\mathrm{OBP}}=\frac{-\mathrm{R} 3}{\mathrm{R} 1} \\
& \mathrm{H}_{\mathrm{ON} 1}(\mathrm{f} \rightarrow 0 \mathrm{~Hz})=\frac{-\mathrm{R} 2}{\mathrm{R} 1}\left(\frac{\mathrm{R} 4}{\mathrm{R} 4+\mathrm{R} 2}\right) \\
& \mathrm{H}_{\mathrm{ON} 2}\left(\mathrm{at} \mathrm{f}=\mathrm{f}_{\mathrm{CLK}} / 2\right)=\frac{-\mathrm{R} 2}{\mathrm{R} 1}
\end{aligned}
$$

Mode $2 N$
Figure 5 shows the configuration of Mode 2 N . This mode extends the topology of Mode 3A to Mode 2, where the highpass and lowpass outputs are summed through two external resistors, RH and RL, to create a lowpass notch filter that has higher frequency than the one in Mode 2. Mode 2 is most useful in lowpass elliptic designs. When cascading the sections of the MAX7490/MAX7491, the highpass and lowpass outputs can be summed directly into the inverting input of the next section. Only one external op amp is needed.

Figure 4. Mode 2, 2nd-Order Filter Providing a Highpass Notch, Bandpass, and Lowpass Outputs

Mode 2N Design Equations

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{O}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \\
& \mathrm{f}_{\mathrm{n}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \sqrt{1+\frac{\mathrm{R}_{\mathrm{H}}}{\mathrm{R}_{\mathrm{L}}}} \\
& \mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}}
\end{aligned}
$$

$$
\mathrm{H}_{\mathrm{ON1}}(\mathrm{f} \rightarrow 0 \mathrm{~Hz})=\left(\frac{\mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{\mathrm{H}}}+\frac{\mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{\mathrm{L}}}\right)\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)\left(\frac{\mathrm{R} 4}{\mathrm{R} 4+\mathrm{R} 2}\right)
$$

Figure 5. Mode 2N, 2nd-Order Filter Providing a Lowpass Notch Output

Dual Universal Switched-Capacitor Filters

Mode 3

Figure 6 shows the configuration of Mode 3. This mode is a sampled time (Z transform) equivalent of the classical 2nd-order state variable filter. In this versatile mode, the ratio of resistors R2 and R4 can move the center frequency both above and below the nominal ratio. Mode 3 is commonly used to make multiple-pole Chebyshev filters with a single clock frequency. This mode can also be used to make high-order all-pole bandpass, lowpass, and highpass filters.
Mode 3 Design Equations

$$
\begin{aligned}
& \mathrm{fO}=\frac{\mathrm{f} C L K}{100} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} \\
& \mathrm{Q}=\frac{\mathrm{R} 3}{\mathrm{R} 2} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} \\
& \mathrm{H}_{\mathrm{OHP}}=\frac{-\mathrm{R} 2}{\mathrm{R} 1} \\
& \mathrm{H}_{\mathrm{OLP}}=\frac{-\mathrm{R} 4}{\mathrm{R} 1} \\
& \mathrm{H}_{\mathrm{OBP}}=\frac{-\mathrm{R} 3}{\mathrm{R} 1}
\end{aligned}
$$

Mode 3A
Figure 7 shows the configuration of Mode 3A. Similar to Mode 2, this mode adds an external op amp. See Table 3 for op amp selection ideas. This op amp creates a highpass notch and lowpass notch by summing

Figure 6. Mode 3, 2nd-Order Section Providing Highpass, Bandpass, and Lowpass Outputs
the highpass and lowpass outputs through two external resistors, RH and RL. The ratio of resistors RH and RL adjusts the notch frequency, while R2 and R4 adjust the bandpass center frequency, since the notch (zero pair) frequency can be adjusted to both above and below fo. Mode 3A is suitable for both lowpass and highpass elliptic or Cauer filters. In multipole elliptic filters, only one external op amp is needed. Use the inverting input of the internal op amp as the summing node for all but the final section of the filter.

Figure 7. Mode 3A, 2nd-Order Filter Providing Highpass Notch or Lowpass Notch Outputs

Dual Universal Switched-Capacitor Filters

Table 3. Suggested External Op Amps

PART	GBW (MHz)	SLEW RATE (V/ $\boldsymbol{\mu s}$)	ISUPPLY/AMP (mA)	PIN-PACKAGE
MAX4281	2	0.7	0.5	5 SOT23
MAX4322	5	2.0	1.1	5 SOT23
MAX4130	10	4.0	1.15	5 SOT23
MAX4490	10	10.0	2.0	5 SOT23

Mode 3A Design Equations

$$
\begin{aligned}
& f_{0}=\frac{f_{C L K}}{100} \sqrt{\frac{R 2}{R 4}} \\
& f_{n}=\frac{f_{C L K}}{100} \sqrt{\frac{R_{H}}{R_{L}}} \\
& Q=\frac{R 3}{R 2} \sqrt{\frac{R 2}{R 4}} \\
& H_{\text {OHP }}=\frac{-\mathrm{R} 2}{\mathrm{R} 1} \\
& H_{\text {OLP }}=\frac{-\mathrm{R} 4}{\mathrm{R} 1} \\
& H_{\text {OBP }}=\frac{-\mathrm{R} 3}{\mathrm{R} 1} \\
& H_{\text {ON1 }}(f \rightarrow O H z)=\frac{R_{G}}{R_{L}}\left(\frac{R 4}{R_{1}}\right) \\
& H_{\text {ON2 }}\left(a t f=f_{C L K} / 2\right)=\frac{R_{G}}{R_{H}}\left(\frac{R 2}{R 1}\right)
\end{aligned}
$$

Note: When the passband gain error exceeds 1dB, the use of capacitor C_{C} between the lowpass output and the inverting input will reduce the gain error. The value can best be determined experimentally. Typically, it should be about $5 \mathrm{pF} / \mathrm{dB}\left(\mathrm{C}_{\mathrm{C}}-\mathrm{MAX}=15 \mathrm{pF}\right)$.

Offset Voltage
Switched-capacitor integrators generally exhibit higher input offsets than discrete RC integrators. The larger offset is mainly due to the charge injection of the CMOS switches into the integrating capacitors. The internal op amp offset also adds to the overall offset value. Figure 8 shows the input offsets from a single $2 n d-o r d e r ~ s e c t i o n . ~ T a b l e ~ 4 ~ l i s t s ~ t h e ~ f o r m u l a ~ f o r ~ t h e ~ o u t-~$ put offset voltage for various modes and output pins.

Power Supplies
The MAX7490 operates from a single +5 V supply, and the MAX7491 operates from a single +3 V supply. Bypass VDD to GND with at least a $0.1 \mu \mathrm{~F}$ capacitor. $V_{D D}$ should be isolated from other digital or high-voltage analog supplies. If dual supplies are required, connect the COM pin to the system ground and the GND pin to the negative supply. Figure 9 shows an example of dual-supply operation. Single-supply and dual-supply performances are equivalent. For dualsupply operation, drive CLK, SHDN, and EXTCLK from GND (which is now V-) to VDD. If using the internal oscillator in dual-supply mode, Cosc can be returned to either GND or the actual ground voltage. Use the MAX7490 for $\pm 2.5 \mathrm{~V}$ and use the MAX7491 for $\pm 1.5 \mathrm{~V}$.
For most applications, a $0.1 \mu \mathrm{~F}$ bypass capacitor from COM to GND is sufficient. If the VDD supply has significant 60 Hz energy, increase this capacitor to $1 \mu \mathrm{~F}$ or greater to provide better power-supply rejection.

Figure 8. Block Diagram of a 2nd-Order Section Showing the Input Offsets

Dual Universal Switched-Capacitor Filters

Table 4. Output DC Offsets for a 2nd-Order Section

MODE	VOSN/HP	VosbP	VoSLP
1	$\begin{aligned} & \mathrm{V}_{\mathrm{OS} 1}[1+(\mathrm{R} 2 / \mathrm{R} 3)+(\mathrm{R} 2 / \mathrm{R} 1)]-\left(\mathrm{V}_{\mathrm{OS} 3}\right) \\ & \text { (R2 / R3) } \end{aligned}$	Vos3	VOSN/HP - Vos2
1b	$\begin{aligned} & V_{\text {OS1 }}[1+(R 2 / R 3)+(R 2 / R 1)]-\left(V_{O S 3}\right) \\ & (R 2 / R 3) \end{aligned}$	Vos3	(VOSN/HP - Vos2)[1 + R5 / R6)]
2	$\begin{aligned} & V_{O S 1}[1+(R 2 / R 3)+(R 2 / R 1)+(R 2 / R 4)- \\ & \left.\left(V_{O S 3}\right)(R 2 / R 3)\right][R 4 / R 2+R 4]+ \\ & \left(V_{\text {OS2 })}[R 2 / R 2+R 4]\right. \end{aligned}$	Vos3	VOSN/HP - Vos2
3	Vos2	Vos3	$\begin{aligned} & V_{\text {OS1 }}[1+(R 4 / R 1)+(R 4 / R 2)+(R 4 / R 3)]-\left(V_{\text {OS }}\right) \\ & (R 4 / R 2)-\left(V_{0 S 3}\right)(R 4 / R 3) \end{aligned}$

Figure 9. Dual-Supply Operation

Input Signal Amplitude Range

 The optimal input signal range is determined by observing the voltage level at which the signal-to-noise plus distortion (SINAD) ratio is maximized for a given corner frequency. The Typical Operating Characteristics show the THD + Noise response as the input signal's peak-to-peak amplitude is varied. In most systems, the input signal should be kept as large as possible to maximize the signal-to-noise ratio (SNR). Allow sufficient headroom to ensure no signal clipping under expected operating conditions.
Anti-Aliasing and Post-DAC Filtering

 When using the MAX7490/MAX7491 for anti-aliasing or post-DAC filtering, synchronize the DAC (or ADC) and the filter clocks. If the clocks are not synchronized, beat frequencies may alias into the desired passband.Aliasing
Aliasing is an inherent phenomenon of most switchedcapacitor filters. As with all sampled systems, frequency components of the input signal above one half the sampling rate will be aliased. The MAX7490/MAX7491 sample at twice the clock frequency, yielding a 200:1 sampling to cutoff frequency ratio.
In particular, input signal components (fin) near the sampling rate generate a difference frequency (fSAMPLING - fin) that often falls within the passband of the filter. Such aliased signals, when they appear at the output, are indistinguishable from real input information. For example, the aliased output signal generated when a 99 kHz waveform is applied to a filter sampling at 100 kHz , (fCLK $=50 \mathrm{kHz}$) is 1 kHz . This waveform is an attenuated version of the output that would result from a true 1 kHz input. Since sampling is done at twice the clock frequency, the Nyquist frequency is the same as the clock frequency.
A simple passive RC lowpass input filter is usually sufficient to remove input frequencies that can be aliased. In many cases, the input signal itself may be band limited and require no special anti-alias filtering. Selecting a passive filter cutoff frequency equal to $\mathrm{fc} / 2$ gives 12 dB rejection at the Nyquist frequency.

Clock Feedthrough Clock feedthrough is defined as the RMS value of the clock frequency and its harmonics that are present at the filter's output pins, even without input signal. The clock feedthrough can be greatly reduced by adding a simple RC lowpass network at the final filter output. Choose a cutoff frequency as low as possible to provide maximum noise attenuation. The attenuation and phase shift of the external filter will limit the actual frequency selected.

Dual Universal Switched-Capacitor Filters

Table 5. Cascading Identical Bandpass
Filter Sections

TOTAL SECTIONS	TOTAL BW	TOTAL Q
1	1.000 B	1.00 Q
2	0.644 B	1.55 Q
3	0.510 B	1.96 Q
4	0.435 B	2.30 Q
5	0.386 B	2.60 Q

Wideband Noise
The wideband noise of the filter is the total RMS value of the device's noise spectral density and is used to determine the operating SNR. Most of its frequency contents lie within the filter's passband and cannot be reduced with postfiltering. The total noise depends mainly on the Q of each filter section and the cascade sequence. Therefore, in multistage filters, the section with the highest Q should be placed first for lower output noise.

Multiple Filter Stages

In some designs, such as very narrow band filters, or in modes where fo cannot be tuned with resistors, several 2nd-order sections with identical fo may be cascaded without multiple feedback. The total Q of the resultant filter (QT) is:

$$
\text { Total } Q T=Q /\left(2^{N}-1\right)^{1 / 2}
$$

Q is the Q of each individual filter section, and N is the number of 2nd-order sections. In Table 5, the total Q and total bandwidth (BW) are listed for up to five identical 2nd-order sections. B is the bandwidth of each section.

Chip Information
TRANSISTOR COUNT: 1439
TECHNOLOGY: BiCMOS

Dual Universal Switched-Capacitor Filters

 Typical Application Circuit

Dual Universal Switched-Capacitor Filters

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

18 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

